Expression properties of the novel Staphylococcus aureus extacellular protease Jep under infection-relevant stress conditions

Universitätsmedizin GREIFSWALD

J.Tebben¹, G. Wockenfuß¹, H. Wolfgramm¹, L.M. Busch¹, S.S. Peringathara², E.M. Bludau² M. Schaffer¹, A. Reder¹, U. Mäder¹, K. Surmann¹, B.M. Bröker², S. Holtfreter², U. Völker¹ ¹ Department of Functional Genomics, University Medicine Greifswald² Institute of Immunology, University Medicine Greifswald

() protease Of σ 4 \triangleleft

dependent

Stress-

D

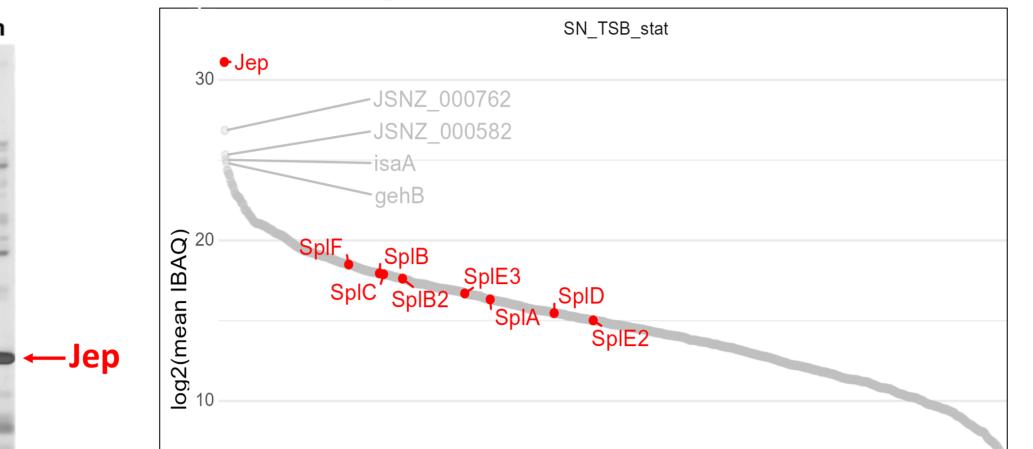
ð

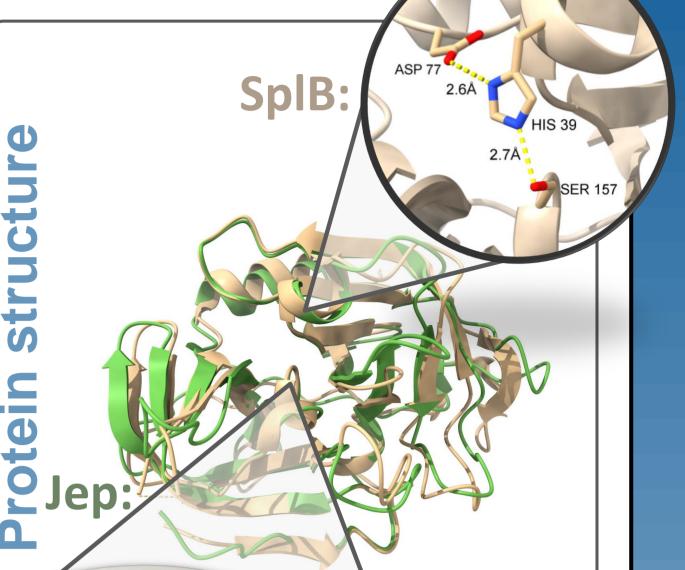
phase

Growth

Sion

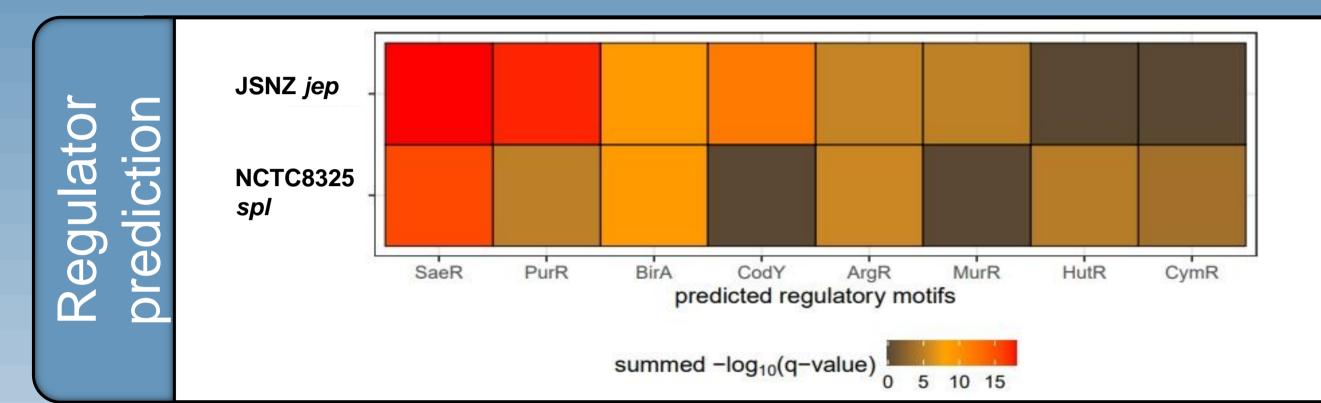
S

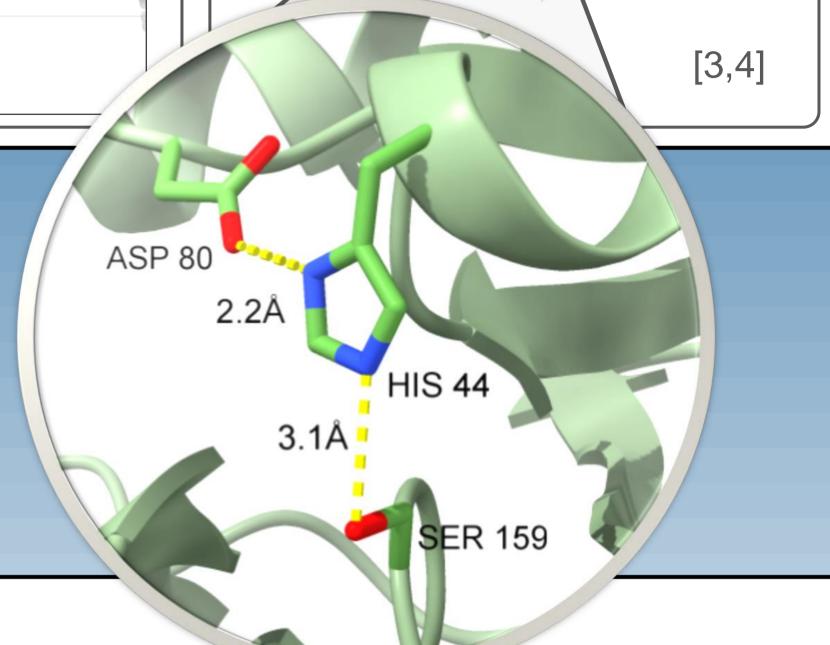

Ð


0 ×

Extracellular proteases are important virulence factors in Staphylococcus aureus. This also comprises a set of serine protease-like proteins (Spls) whose role in infection is still poorly understood. In the mouse-adapted S. aureus strain JSNZ, we recently identified a closely related protease, JSNZ extracellular protease (Jep) [1,2]. It shares significant sequence homology and a conserved catalytic triad with the Spls, making it an interesting candidate for investigating the role of serine proteases in murine S. aureus infection models.

Here, we characterize jep-expression in JSNZ under




different stress conditions. Furthermore, we optimize a system for inducible *jep*-expression to analyze the effect of the protease in different genetic backgrounds.

Silver stained SDS-PAGE

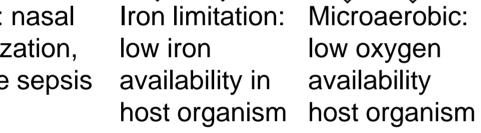
140

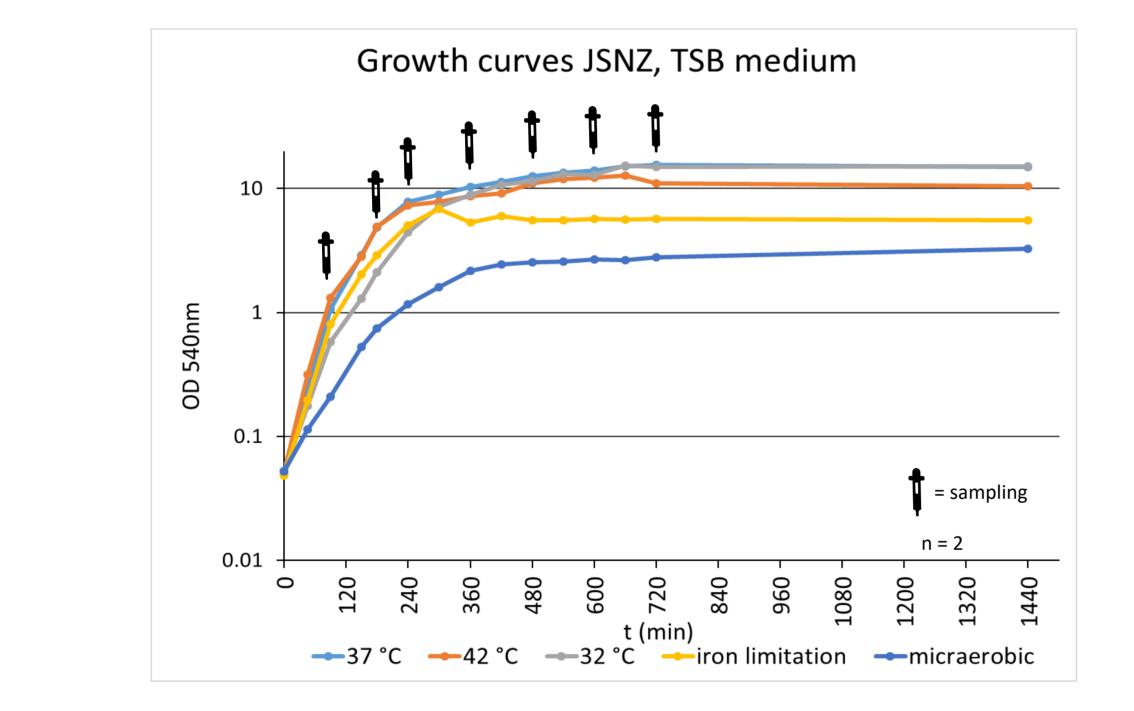
- Analysis performed with *in silco* tool "FIMO" [5], regulatory motifs from "RegPrecise" [6]
- 300 bp upstream 200 bp downstream of jep and spl start codon

Infection relevant conditions:

37 °C, body

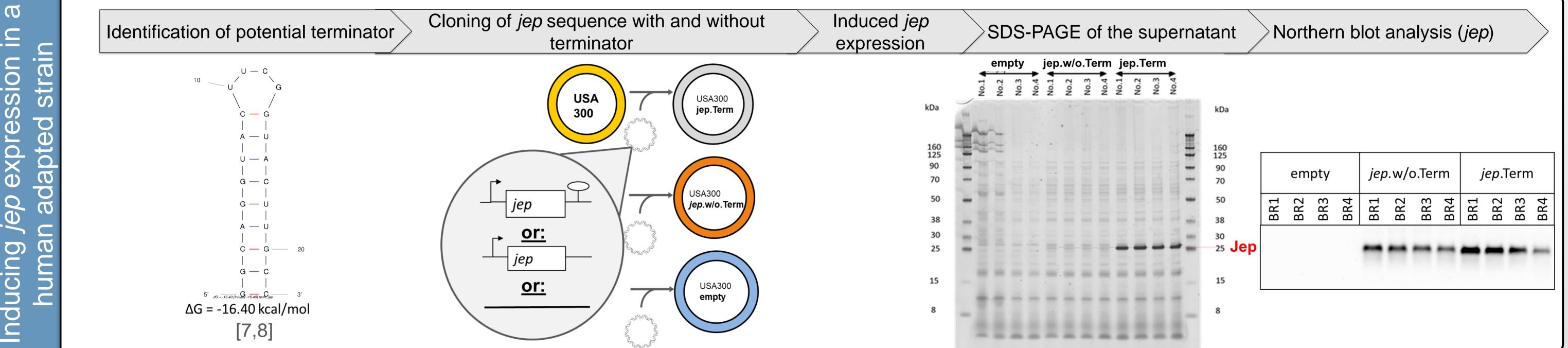
temperature





42 °C: high fever

32 °C: nasal colonization, severe sepsis


Northern blot analysis – Mapping gene expression

37 °C						42 °C						32 °C				32 °C			Iron limitation							Microaerobic									
06	180	240	360	480	600	720	06	180	240	360	480	600	720	06	180	240	360		480	600	720	06	180	240	360	480	600	720	90	180	240	360	480	600	720
-		-	-	-	-	1	1	=	=	-	-	-	-						-	-	-	-	-	-	-	-						-			

	Western blot analysis (secretome) – Mapping protein levels																													
37 °C				42 °C				32 °C						Iron limitation							Microaerobic									
40 60	80	00	20	0	80	40	60	80	00	20	0	80	40	60	80	00	20	0	80	40	00	80	8	20	0	30	1 0	00	0000	20

90 180 240 360 480 600 720	90 180 240 360 480 600 720	90 180	240 360 480 600 720	6	180 240	360	480	600 720	6	180 240	360 480	600 720
				•	-	<u>û</u>	-	-	p.s			

- Expression of *jep* starts in exponential phase and increases until stationary phase
- The protein accumulates in the supernatant
- Iron limitation and heat stress lead to earlier and higher expression
- Oxygen limitation decreases expression drastically

Results

Dutlook

Jep is the most abundant protein in JSNZ stationary phase supernatant indicating a central role in JSNZ lifestyle Sequence and structure homology of Jep and Spls: Jep could give insights to the role of Spls in human infection

ummary

())

GERHARD

- Potential regulatory motifs connect *jep*-expression to virulence
- Protein accumulates in supernatant: indicates high stability of the protease
- Iron limitation and heat stress lead to earlier *jep*-expression, oxygen limitation decreases expression: potential adaptation to diverse niche environments in the host organism
- System for inducible *jep*-expression optimized

- Comparison of JSNZ intraand extracellular proteome under stress conditions shown above via mass spectrometry
- Characterization of *jep*expression under oxidative stress
- 1. Holtfreter, Silva et al. "Characterization of a mouse-adapted Staphylococcus aureus strain." PloS one vol. 8,9 e71142. 2 Sep. 2013,
- 2. Schulz, Daniel et al. "Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response-Note of Caution for In vivo Infection Experiments." Frontiers in cellular and infection *microbiology* vol. 7 152. 2 May. 2017
- 3. Dubin, Grzegorz et al. "Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln." Journal of molecular biology vol. 379,2 (2008): 343-56.
- 4. Knyphausen, Philipp et al. "Evolution of protease activation and specificity via alpha-2-macroglobulin-mediated covalent capture." Nature communications vol. 14,1 768. 11 Feb. 2023
- 5. Grant, Charles E et al. "FIMO: scanning for occurrences of a given motif." Bioinformatics (Oxford, England) vol. 27,7 (2011): 1017-8.
- 6. Novichkov, Pavel S et al. "RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes." Nucleic acids research vol. 38, Database issue (2010)
- 7. Naville, Magali et al. "ARNold: a web tool for the prediction of Rho-independent transcription terminators." RNA biology vol. 8,1 (2011): 11-3.
- 8. Baerends, Richard J S et al. "Genome2D: a visualization tool for the rapid analysis of bacterial transcriptome data." Genome biology vol. 5,5 (2004): R37.

DOMAGK Nachwuchsförderprogramm

Project is funded by the German Research Foundation (DFG GRK 2719/1)

Center for **Functional Genomics** of Microbes

S

Ŏ

efe

M

Corresponding author: joeran.tebben@stud.unigreifswald.de